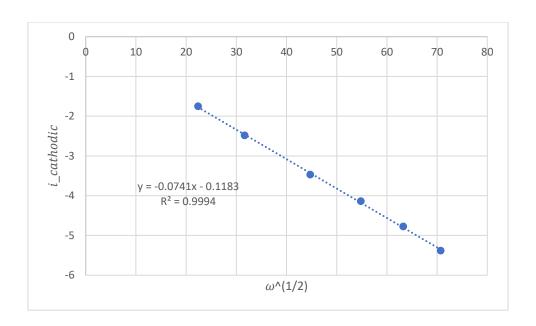

## MSE-441 Exercise-7

## Exercise 1:

Try to determine the diffusion coefficient for  $[Fe(CN)_6]^{3-}$ . The reduction of  $[Fe(CN)_6]^{3-}$  is done in a RDE setup with a 2 mm diameter Pt disk. The concentration of  $[Fe(CN)_6]^{3-}$  is 0.005 mol/L and  $[Fe(CN)_6]^{4-}$  is 0.005 mol/L. The temperature and viscosity of the reactant solution is 20°C and 0.01 cm<sup>2</sup>/s.




## Solution:

To determine the diffusion coefficient of  $[Fe(CN)_6]^{3-}$ , the cathodic Levich equation should be used, and  $[Fe(CN)_6]^{3-}$  is reduced to  $[Fe(CN)_6]^{4-}$ :

$$i_{cathodic} = -0.620nF[O_{bulk}]D_o^{\frac{2}{3}}v^{-\frac{1}{6}}\omega^{\frac{1}{2}}$$
  
[Fe(CN)<sub>6</sub>]<sup>3-</sup> + e<sup>-</sup> = [Fe(CN)<sub>6</sub>]<sup>4-</sup>

The diffusion limited current density at various rotation speed is extracted from the plot. Then plot  $i_{cathodic}$  v.s.  $\omega^{\frac{1}{2}}$ :

| rotation speed/rpm       | 500      | 1000     | 2000     | 3000     | 4000     | 5000     |
|--------------------------|----------|----------|----------|----------|----------|----------|
| sqrt(rotation speed/rpm) | 22.36068 | 31.62278 | 44.72136 | 54.77226 | 63.24555 | 70.71068 |
| current/mA               | -0.055   | -0.078   | -0.109   | -0.13    | -0.15    | -0.169   |
| current density/mA/cm2   | -1.7507  | -2.48282 | -3.46958 | -4.13803 | -4.77465 | -5.37944 |



The slope would be:

$$-0.620nF[O_{bulk}]D_o^{\frac{2}{3}}v^{-\frac{1}{6}} = -0.0741$$

Then to calculate the coefficient:

$$-0.620 \times 1 \times 96485 \left(\frac{C}{mol}\right) \times 0.005 \times \left(\frac{mol}{L}\right) D_o^{\frac{2}{3}} \left(0.01 \frac{cm^2}{s}\right)^{-\frac{1}{6}} = -0.0741 \left(\frac{mA}{cm^2} \cdot rpm^{\frac{1}{2}}\right)$$

$$1 \ rpm = 0.1047 \ rads/s$$

$$D_o^{\frac{2}{3}} = 3.55 \times 10^{-4} \left(\frac{cm^2}{s}\right)^{2/3}$$

$$D_o = 6.69 \times 10^{-6} \frac{cm^2}{s}$$